Режимы резания для обработки титана. Резка и токарная обработка титана

Актуальность

Для изготовления конструкций и деталей из титановых сплавов применяются всевозможные виды механической обработки: шлифование, точение, сверление, фрезерование, полирование.
Одной из важных особенностей при механической обработке деталей из титана и сплавов является то, что необходимо обеспечить ресурсные, в особенности усталостные характеристики, в значительной степени зависящие от качеств поверхностного слоя, который формируется при холодной обработке. Из-за низкой теплопроводности и др. специфических свойств титана, проведение шлифования как завершающей стадии обработки затруднено. Во время шлифовки очень легко могут образовываться прижоги, в поверхностном слое могут возникать дефектные структуры и остаточные напряжения, растяжения, которые существенно влияют на снижение усталостной прочности изделий. Поэтому, шлифование деталей из титана обязательно проводится при пониженных скоростях и в случае необходимости может быть заменено на лезвийную либо абразивную обработку низкоскоростными методами. В случае же применения шлифования, оно должно проводиться с применением строго регламентированных режимов с проведением последующего контроля поверхности деталей на наличие прижогов и сопровождаться улучшением качеств детали за счет упрочнения поверхностным пластическим деформированием (ППД).

Сложности

Из-за высоких прочностных свойств титан плохо поддаются обработке резанием . Он имеет высокое соотношение предела текучести ко времени сопротивления разрыву примерно 0,85−0,95. Например, для стали этот показатель не превышает 0,75. Как результат, при механической обработке титановых сплавов необходимы большие усилия, что из-за низкой теплопроводности влечет за собой значительное повышение температуры в поверхностных слоях разреза и затрудняет охлаждение зоны резки. Из-за сильной адгезии титан накапливается на режущей кромке, что значительно повышает силу трения. Кроме того, приваривание и налипание титана в местах соприкосновения поверхностей приводит к изменению геометрии инструмента. Такие изменения, изменяющие оптимальную конфигурацию, влекут за собой дальнейшее повышение усилий для обработки, что, соответственно, приводит к еще большему повышению температуры в точке контакта и ускорению износа. Больше всего на повышение температуры в рабочей зоне влияет скорость резания, в меньшей степени это зависит от усилия подачи инструмента. Наименьшее влияние на повышение температуры оказывает глубина проведения резания.

Под действием высоких температур при резании происходит окисление титановой стружки и обрабатываемой детали. Это влечет в последующем для стружки проблему, связанную с ее утилизацией и переплавкой. Аналогичный процесс для обрабатываемой детали в последующем может привести к ухудшению ее эксплуатационных характеристик.

Сравнительный анализ

Процесс холодной обработки титановых сплавов по трудоемкости в 3−4 раза сложнее, чем обработка углеродистых сталей, и в 5−7 раз — чем обработка алюминия. По информации ММПП «Салют», сплавы титана ВТ5 и ВТ5−1 в сравнению с углеродистых сталью (с 0,45% С), имеют коэффициент относительной обрабатываемости 0,35−0,48, а для сплавов ВТ6, ВТ20 и ВТ22 этот показатель еще меньше и составляет 0,22−0,26. Рекомендуется при механической обработке использовать низкую скорость резки при небольшой подаче, используя для охлаждения большое количество охлаждающей жидкости. При обработке изделий из титана применяются режущие инструменты из наиболее износостойкой быстрорежущей стали, предпочтение отдается твердым сортам сплавов. Но даже при выполнении всех предписанных условий для резания, скорости должны быть уменьшены, по крайней мере, в 3−4 раза, по сравнению с обработкой стали, что должно обеспечить приемлемую стойкость инструмента, особенно это важно при работе на станках с ЧПУ.

Оптимизация

Температуру в зоне резки и усилие для резания можно существенно снизить, увеличив содержание водорода в сплаве, вакуумным отжигом и соответствующей механической обработкой. Проведение легирования сплавов из титана при помощи водорода дает в конечном итоге значительное снижение температуры в зоне резания, дает возможность снизить силу резания, повышает стойкость твердосплавного инструмента до 10 раз в зависимости от природы сплава и режима резания. Этот способ дает возможность увеличить скорость обработки в 2 раза без потери качества, а также увеличивать усилие и глубину при проведении резания без снижения скорости.

Для механической обработки деталей из сплавов титана широкое применение получили технологические процессы, которые позволяют совместить несколько операций в одну за счет использования многоинструментального оборудования. Наиболее целесообразно такого рода технологические операции проводить на многооперационных станках (обрабатывающих центрах). К примеру, для изготовления силовых деталей из штамповок применяются станки МА-655А, ФП-17СМН, ФП-27С; деталей типа «кронштейн», «колонка», «корпус» из фасонной отливки и штамповки — станки «Горизонт», Me-12−250, МА-655А, листовых панелей — станок ВФЗ-М8. На этих станках при обработке большинства деталей реализован принцип «максимальной» законченности обработки в одной операции, что достигается благодаря последовательной обработке детали с нескольких сторон на одном станке при помощи нескольких установленных на нем приспособлений.

Фрезерование

Из-за необходимости приложения больших усилий для механической обработки сплавов титана применяются, как правило, крупные станки (ФП-7, ФП-27, ФП-9, ВФЗ-М8 и т. п.). Фрезерование является самым трудоемким процессом во время изготовления деталей. Особенно большой объем таких работ приходится на изготовление силовых деталей каркасов самолета: нервюры, шпангоуты, балки, лонжероны, траверсы.

При фрезеровании деталей типа «траверса», «балки», «нервюра» используется несколько методов. 1) При помощи специальных гидравлических или механических копиров на универсально-фрезерных станках. 2) По копирам на копирно-фрезерных гидравлических станках. 3) На станках с ЧПУ типа МА-655С5, ФП-11, ФП-14. 4) При помощи трехкоординатных станков с ЧПУ. При этом используют: специальные сборные фрезы с изменяемым во время обработки углом; фасонные вогнутые и выпуклые фрезы радиационного профиля; концевые фрезы с подведением к цилиндрической поверхности детали плоскости стола под необходимым углом.

Для обработки авиационных материалов в нашей стране создано множество станков, которые не уступают мировым стандартам, а некоторые из них не имеют аналогов за границей. Например, станок ВФ-33 с ЧПУ (продольно-фрезерный трёхшпиндельный трёхкоординатный) назначение которого одновременная обработка тремя шпинделями панелей, монорельсов, нервюр, балок и других такого рода деталей для тяжелых и легких самолетов.
Станок 2ФП-242 В, имеющий два подвижных портала и ЧПУ (продольно-фрезерный трехшпиндельный четырехкоординатный) разработан для обработки габаритных лонжеронов и панелей при для тяжелых и широкофюзеляжных самолетов. Станок ФРС-1, оснащенный подвижной колонной, горизонтально-фрезерно-расточный, 15-ти координатный с ЧПУ — предназначен для обработки стыковых поверхностей центроплана и крыла широкофюзеляжных самолетов. СГПМ-320, гибкий производственный модуль, в состав которого входят токарный станок, ЧПУ АТ-320, магазин на 13 инструментов, манипулятор автоматический для съема и установки деталей для ЧПУ. Гибкий производственный комплекс АЛК-250, созданный для производства прецизионных деталей для корпуса гидроагрегатов.

Инструменты

Чтобы обеспечить оптимальные условия резания и высокое качество поверхности деталей, необходимо строгое соблюдение геометрических параметров инструмента из твердых сплавов и быстрорежущих сталей. Резцы с пластинками из твердого сплава ВК8 применяются для точения кованых заготовок. Рекомендуются следующие геометрические параметры резцов во время обработки по газонасыщенной корке: главный угол в плане φ1 =45°, вспомогательный угол в плане φ =14°, передний угол γ=0°; задний угол α = 12°.При следующих режимах резания: подача s = 0,5 — 0,8 мм/об, глубина резания t не менее 2 мм, скорость резания v = 25 — 35 м/мин. Для проведения чистового и получистового непрерывного точения можно применить инструменты из твердых сплавов ВК8, ВК4, ВКбм, ВК6 и др. при глубине резания 1−10 мм, скорость резки составляет v = 40−100 мм/мин, а подача должна составлять s = 0,1−1 мм/об. Могут так же применяться инструменты из быстрорежущей стали (Р9К5, Р9М4К8, Р6М5К5). Для резцов, изготовленных из быстрорежущей стали, разработана следующая геометрическая конфигурация: радиус при вершине r = 1 мм, задний угол α = 10°, φ = 15°. Допустимые режимы резки при точении титана достигаются при глубине резки t = 0,5−3 мм, v = 24−30 м/мин, s <0,2 мм.

Твердые сплавы

Проведение фрезерных работ с титаном затрудняет налипание титана на зубья фрезы и их выкашивание. Для изготовления рабочих поверхностей фрез используются твердые сплавы ВК8, ВК6М, ВК4 и быстрорежущие стали Р6М5К5, Р9К5, Р8МЗК6С, Р9М4К8, Р9К10. Для проведения фрезеровки титана при помощи фрез с пластинами из сплава ВК6М рекомендуется использовать следующий режим резания: t = 2 — 4 мм, v = 80 — 100 м/мин, s =0,08−0,12 мм/зуб.

Сверление

Проведение сверления титана затрудняет налипание стружки на рабочую поверхность инструмента и ее набивание в отводящие канавки сверла, что ведёт к повышению сопротивления резанию и быстрому износу режущей кромки. Для предупреждения этого рекомендуется при проведении глубокого сверления периодически проводить очистку инструмента от стружки. Для сверления применяют инструменты из быстрорежущих сталей Р12Р9К5, Р18Ф2, Р9М4К8, Р9К10, Р9Ф5, Ф2К8МЗ, Р6М5К5 и твердого сплава ВК8. При этом рекомендуются следующие параметры геометрии сверл: для угла наклона спиральной канавки 25−30, 2φ0 = 70−80°, 2φ = 120−130°, α = 12−15°, φ = 0−3°.

Для повышения производительности при обработке титановых сплавов резанием и увеличения стойкости применяемого инструмента используют жидкости типа РЗ СОЖ-8. Они относятся к галлоидосодержащим смазывающе-охлаждающим. Охлаждение обрабатываемых деталей проводится методом обильного орошения. Применение галлоидосодержащих жидкостей при обработке влечет за собой образование солевой корки на поверхности титановых деталей, которая с учетом нагрева и одновременного действия напряжения может вызвать солевую коррозию. Для предотвращения этого после обработки с применением РЗ СОЖ-8 детали подвергаются облагораживающему травлению, во время которого снимается поверхностный слой толщиной до 0,01 мм. Во время проведения сборочных операций применение РЗ СОЖ-8 не допускается.

Шлифовка

На обрабатываемость титановых сплавов существенно влияет их химический и фазовый состав, тип и параметры микроструктуры. Наиболее затруднена обработка титановых полуфабрикатов и деталей, имеющих грубую пластинчатую структуру. Такого рода структура имеется у фасонных отливок. Кроме того, фасонные отливки из титана имеют газонасыщенную корку на поверхности, которая сильно влияет на износ инструмента.

Проведение шлифовки титановых деталей затруднено из-за высокой склонности контактного схватывания во время трения. Оксидная поверхностная пленка легко разрушается во время трения под действием удельных нагрузок. В процессе трения в местах соприкосновения поверхностей происходит активное перенесение материала из обрабатываемой детали на инструмент («схватывание»). Способствуют этому так же и другие свойства сплавов титана: более низкая теплопроводность, повышение упругой деформации при сравнительно низком модуле упругости. Из-за выделения тепла на трущейся поверхности утолщается оксидная пленка, что в свою очередь повышает прочность поверхностного слоя.

При обработке деталей из титана применяются ленточное шлифование и шлифование абразивными кругами. Для промышленных сплавов наиболее распространено применение абразивных кругов из зеленого карбида кремния, который обладает большой твердостью и хрупкостью при стабильности физико-механических свойств с более высокими абразивными способностями, чем у черного карбида кремния.

Купить, цена

Компания ООО «Электровек-сталь» реализует металлопрокат по оптимальной цене. Она формируется с учетом ставок на LME (London metal exchange) и зависит от технологических особенностей производства без включения дополнительных затрат. Поставляем полуфабрикаты из титана и его сплавов в широком ассортименте. Все партии изделий имеют сертификат качества на соответствие требованиям стандартов. У нас вы можете купить оптом самую различную продукцию для масштабных производств. Широкий выбор, исчерпывающие консультации наших менеджеров, доступные цены и своевременность поставки определяют лицо нашей компании. При оптовых покупках действует система скидок

Титановые сплавы широко используются в современ­ной технике, поскольку их высокие механические свойства и коррозионная стойкость сочетаются с малым удельным весом. Разработаны сплавы различного состава и свойст­ва, например: технически чистый титан (ВТ1, ВТ2), сплавы систем титан-алюминий (ВТ5), титан-алюми­ний-марганец (ВТ4, ОТ4), титан-алюминий-хром- молибден (ВТЗ) и др. По общей классификации трудно­обрабатываемых материалов титановые сплавы сведены в VII группу (табл. 11.11).

Так же, как нержавеющие и жаропрочные стали и сплавы, титановые сплавы имеют ряд особенностей, обусловливающих их низкую обрабатываемость.

1. Малая пластичность, характеризуемая высоким коэффициентом упрочнения, примерно в два раза большим, чем у жаропрочных материалов. Вместе с тем механические характеристики титановых сплавов по сравнению с жаропрочными меньше. Пониженные пластические свойства титановых сплавов в процессе их деформации способствуют развитию опережающих микро- и макротрещин.

Образуемая стружка по внешнему виду напоминает сливную, имеет трещины, разделяющие ее на очень слабо деформированные элементы, прочно связан­ные тонким и сильно деформированным контактным слоем. Образование такой стружки объясняется тем, что с увеличением скорости пластическая деформация при высоких температуре и давлении протекает в основном в контактном слое, не затрагивая срезаемый слой. Поэтому при высоких скоростях резания образуется не сливная, а элементная стружка.

Углы сдвига при резании титановых сплавов достигают 38...44°, в этих условиях при скоростях резания, больших 40 м/мин, возможно образование стружки с коэффициен­том укорочения K l < 1, т. е. стружка имеет большую длину, чем путь резания. Подобное явле­ние объясняется высокой химической активностью титана.

Пониженная пластичность приводит к тому, что при обработке титановых сплавов сила Р Z примерно на 20 % ниже, чем при обработке сталей, а силы Р у и Р х - выше. Это различие указывает на характерную особен­ность титановых сплавов - силы резания на задней по­верхности при их обработке относительно больше, чем при обработке сталей. Как следствие, при увеличении износа силы резания, особенно Ру, резко возрастают.

2. Высокая химическая активность к кислороду, азоту, водороду. Это вызывает интенсивное охрупчивание поверхностного слоя сплавов вследствие диффузии в него атомов газов при повышении температуры. Насыщенная атмосферными газами стружка теряет пластичность и в этом состоянии не подвергается обычной усадке.

Высокая активность титана по отношению к кислороду и азоту воздуха в 2…3 раза снижает площадь контакта стружки с передней поверхностью инструмента, что не наблюдается при обработке конструкционных сталей. Вместе с тем окисление контактного слоя стружки повы­шает ее твердость, увеличивает контактные напряжения и температуру резания, а также повышает интенсивность изнашивания инструмента.

3. Титановые сплавы имеют чрезвычайно плохую тепло­проводность, более низкую, чем у жаропрочных сталей и сплавов. Как следствие, при резании титановых сплавов возникает температура, более чем в 2 раза превышающая уровень температур при обработке стали 45.

Высокая температура в зоне резания вызывает интенсивное наростообразование, схватывание обрабатываемо­го материала с материалом инструмента и появление задиров на обработанной поверхности.

4. Вследствие содержания в титановых сплавах нитри­дов и карбидов материал режущего инструмента в сильной степени подвержен абразивному воздействию. Однако при повышении температуры титановые сплавы сильнее снижают свою прочность, чем нержавеющие и жаропроч­ные стали и сплавы. Обработка резанием по корке многих кованых, прессованных или литых заготовок из титановых сплавов затруднена дополнительным абразивным воз­действием на режущие кромки инструмента неметалли­ческих включений, оксидов, сульфидов, силикатов и много­численных пор, образующихся в поверхностном слое. Неоднородность структуры снижает виброустойчивость процесса обработки титановых сплавов. Эти обстоятельст­ва, а также концентрация значительного количества теплоты в пределах небольшой площадки контакта на передней поверхности приводят к преобладанию хрупкого изнашивания с периодическим скалыванием по передней и задней поверхностям и выкрашиванию режущей кромки. При высоких скоростях резания интенсифицируется теп­ловое изнашивание, на передней поверхности резца разви­вается лунка. Во всех случаях, однако, лимитирующим является износ его задней поверхности.

Уровень скорости резания V T при обработке титановых сплавов в 2,5…5 раз ниже, чем при обработке стали 45 (см. табл. 11.11).

5. При обработке титановых сплавов особое внимание необходимо уделять вопросам техники безопасности, так как образование тонкой стружки и тем более пыли может привести к ее самовоспламенению и интенсивному горе­нию. Кроме того, пылеобразная стружка вредна для здоровья. Поэтому не допускается работа с подачами менее 0,08 мм/об, использование затупленного инстру­мента с износом более 0,8...1,0 мм и со скоростями резания более 100 м/мин, а также скопление стружки в большом объеме (исключение делается для сплава ВТ1, обработка которого разрешается при скоростях резания до 150 м/мин).

При обработке титановых сплавов широко используют­ся технологические среды (табл. 11.12).

Правильный выбор СОТС может повысить период стойкости инструмента в 1,5…3 ра­за, снизить высоту микронеровностей в 1,5…2 раза. Харак­терной особенностью использования СОТС при обработке титановых сплавов является малая эффективность при­садок, содержащих серу, азот, фосфор, поскольку эти элементы хорошо растворимы в титане. Гораздо более эффективны в качестве присадок галогены, и в первую очередь йод.

Принято считать, что титан поддаётся механической обработке подобно нержавеющим сталям. Это значит, что обрабатывать титан в 4-5 раз труднее, чем обычную сталь, но это всё же не составляет неразрешимой проблемы.
Основные проблемы при обработки титана - это большая склонность его к налипанию и задиранию, низкая теплопроводность, а также то обстоятельство, что практически все металлы и огнеупорны растворяются в титане, в результате чего представляет собой сплав титана и твёрдого материала режущего инструмента. Такая обработка вызывает быстрый износ резца.

Для уменьшения налипания и задирания и для отвода большого количества тепла, которое выделяется при резании, применяют охлаждающие жидкости. Точение заготовки производят спомощью резцов из твёрдых сплавов причём скорость обработки, как правило, ниже, чем при точении нержавеющей стали.

Если необходимо разрезать листы из титана, то эту операцию осуществляют на гильотинных ножницах. Сортовой прокат больших диаметров режут механическими пилами, применяяножовочные полотна с крупным зубом. Менее толстые прутки разрезают на токарных станках.

При фрезеровании титан остаётся верным себе и налипает на зубья фрезы. Фрезы тоже изготовляют из твёрдых сплавов, а для охлаждения применяют смазки, отличающиеся большой вязкостью.

При сверлении титана основное внимание обращают на то, чтобы стружка не скапливалась в отводящих канавках, так как это быстро повреждает сверло. В качестве материала для сверления титана применяют быстрорежущую сталь.

При использовании титана как конструкционного материала титановые детали соединяют друг с другом и с деталями из иных материалов разными методами.

Основной метод - сварка. Самые первые попытки сварить титанбыли неудачными, что объяснялось взаимодействием расплавленного металла с кислородом, азотом и водородом воздуха, ростом зерна при нагреве, изменениями в микроструктуре и другими факторами, приводимые к хрупкости шва. Однако все эти проблемы, ранее казавшиеся неразрешимыми, были решены в самые короткие сроки в наши дни сварка титана - обычная промышленная технология.

Но, хотя проблемы решены, сварка титана не стала простой и лёгкой. Основная её трудность и сложность заключается в необходимости постоянного и неукоснительного предохранения сварного шва от загрязнения примесями. Поэтому при сварке титана используют не только инертный газ высокой чистоты и специальные бескислородные флюсы, но и разнообразные защитные козырьки, прокладки, которые защищают остывающие.

Чтобы максимально снизить рост зерна и уменьшить изменения в микроструктуре, сварку ведут с большой скоростью. Почти все виды сварки производят в обычных условиях, применяя специальные меры для защиты нагретого металла от соприкосновение с воздухом.

Но мировая практика знает и сварку в контролируемой атмосфере. Такая защита сварного шва обычно необходима при выполнении особо ответственных работ, когда требуется стопроцентная гарантия того, что сварной шов не будет загрязнён. Если свариваемые части не велики, сварку ведут в специальной камере, заполненной инертным газом. Сварщик хорошо видит всё, что ему нужно через специальное окно.

Когда же сваривают большие детали и узлы, контролируемую атмосферу создают в специальных вместительных герметичных помещениях, где сварщики работают, применяя индивидуальные системы жизнеобеспечения. Разумеется, эти работы ведут сварщики самой высокой квалификации, но и обычную сварку титана должны проводить только специально обученные этому делу люди.

В тех случаях, когда сварка не возможна или попросту не целесообразна, прибегают к пайке. Пайка титана осложняется тем, что он при высоких температурах химически активен и очень прочно связан с покрывающей его поверхность - окисной плёнкой. Подавляющее большинство металлов непригодно для использования в качестве припоев при пайке титана, так как получаются хрупкие соединения. Только чистые серебро и алюминий подходят для этой цели.

Соединять титан с титаном, а также с другими металлами можно и механически - клепкой или при помощи болтов. При использовании титановых заклёпок время клёпки увеличивается почти вдвое по сравнению с применением высокопрочных алюминиевых деталей, а гайки и болты из нового промышленного металла непременно покрывают слоем серебра или синтетического материала тефлона, иначе при завинчивании гайки титан будет, как это ему неизменно присуще, налипать и задираться и резьбовое соединение не сможет выдержать больших напряжений.

Склонность к налипанию и задиранию, обусловленная высоким коэфициентом трения, - очень серьёзный недостаток титана. Это приводит к тому, что титановые сплавы быстро изнашиваются и их нельзя использовать для изготовления деталей, работающих в условиях трения скольжения. При скольжении по любому металлу титан налипает на его поверхность, и деталь вязнет, схваченная липким слоем титана.

Впрочем, говорить, что титановые сплавы нельзя применять при изготовлении трущихся деталей, неверно. Существует немало способов, упрочняющих поверхность титана и устраняющих склонность к налипанию. Один из них - азотирование.

Процесс заключается в том, что детали, нагретые до 850-950 градусов, выдерживают в чистом газообразном азоте более суток. На поверхности металла образуется золотисто-жёлтая плёнка нитрида титана большой микротвёрдости. Износостойкость титановых деталей повышается во много раз и не уступает изделиям из специальных поверхностно упрочнённых сталей.

Другой распространённый метод устранения склонности титана к задиранию - оксидирование. При этом в результате нагрева на поверхности деталей образуется окисная плёнка. При низкотемпературном оксидировании свободный доступ воздуха к металлу затруднён и окисная плёнка получается плотной, хорошо связанной с основной толщей титана.

Высокотемпературное оксидирование заключается в том, что в течении 5-6 часов детали выдерживают на воздухе нагретыми до 850 градусов, а затем резко охлаждают в воде, чтобы удалить с поверхности рыхлую окалину. В результате оксидирования сопротивление износу возрастает в 15-100 раз.

Среди неспециалистов бытует мнение, что титан имеет явное сходство с нержавеющей сталью. А значит, его можно подвергать механической обработке. При этом такой металл все же прочнее стали, поэтому сама работа с ним примерно раз в пять труднее. Тем не менее, особых проблем металлообработка вызывать не должна.

Сложности обработки титановых изделий

На самом же деле все обстоит несколько сложнее, чем представляется на первый взгляд. Металл этот отличается сниженной теплопроводностью, способен задираться и налипать. Кроме того, сложность заключается и в том, что титан необычайно прочен и способен при термических работах спаиваться с режущим инструментом (ведь резец также состоит из металла и практически всегда оказывается более мягким, чем обрабатываемая деталь). В результате инструмент особенно быстро изнашивается и требует постоянной замены.

Говоря об обработке металла, профессионалы подразумевают несколько разных видов работ с титановыми деталями. У них существуют свои секреты, позволяющие нейтрализовать отрицательные свойства этого металла или свести их к минимуму. Например, специальные охлаждающие составы помогут уменьшить задирание либо налипание металла, а также снизить тот объем тепла, который выделяется при резке титана.

Титановые листы разрезают с помощью гильотинных ножниц. Прокатный сортовой металл крупного диаметра обычно подвергают резке специальными пилами механического типа. Этот инструмент отличается тем, что зуб полотна у него достаточно крупный. Если пруток имеет меньший диаметр, в ход можно пустить токарный станок. Кстати, токарная обработка данного металла осуществляется резцами, изготовленными из особо прочных сплавов. Но даже при этом обстоятельстве скорость работы должна быть снижена и обычно уступает той скорости, которая наблюдается при обработке стали-нержавейки.

Фрезеровка титановых деталей также вызывает сложности: на фрезерные зубцы металл начинает налипать. Чтобы избежать этого, необходимо использовать фрезу, изготовленную из сплавов высокой твердости. В качестве охладителей применяют жидкости, уровень вязкости которых повышен.

Отдельное внимание следует уделить сверлению титановых элементов. В канавках может скапливаться стружка, вследствие чего сверло начинает деформироваться. Сверлить титан можно с помощью стальных быстрорежущих инструментов.

Титан можно использовать также и в качестве материала для составляющих каких-либо конструкций. Детали из этого металла требуется соединять, и здесь применяют несколько методов. Стоит рассмотреть этот вопрос подробнее.

Особенности сварочных работ по титану

Сварка является наиболее часто используемым вариантом соединения титановых деталей. Поначалу любая попытка титановой сварки заканчивалась неудачей. Причины этого назывались разные. Считалось, что в микроструктуре металла происходят изменения, что титан вступает в реакцию в азотом, кислородом и водородом, которые содержатся в воздухе. Среди других факторов называлось возрастание зернистости при разогреве металла. В любом случае, швы оказывались предельно хрупкими. Однако все эти проблемы удалось достаточно быстро решить с помощью новых технологий. Поэтому в настоящее время сварка титановых элементов не вызывает особых сложностей и считается обыденной.

Вместе с тем, определенные нюансы при проведении сварочных работ все же наблюдаются. Чаще всего, это выражается в том, что сварочный шов требуется постоянно оберегать от примесей, которые его загрязняют. Чтобы избежать этого, сварщики применяют флюсы, действующие без кислорода, а также чистый инертный газ. Используются также специализированные прокладки и козырьки для защиты - они позволяют прикрывать остывающие швы и препятствуют загрязнению.

Подобные услуги по металлообработке предполагают повышенную скорость сварки. Это позволяет снизить возрастание зернистости и задержать любые деформации микроструктуры материала. Сварка осуществляется в стандартных условиях. Для того чтобы защитить горячий металл от вступления в реакцию с воздухом, используются отдельные предупреждающие меры.

Сварка может осуществляться и в атмосфере полной контролируемости. Соблюдать ее необходимо, когда требуется избежать даже возможности загрязнения шва. Такие требования выдвигаются для самых ответственных сварочных работ при гарантии чистоты в 100%.

В случае, если нужно соединить небольшие по объему детали, работа проводится в особой камере, которая полностью заполняется инертным газом. Чтобы сварщику был виден весь фронт работ, камеру оснащают специальным окошком.

Если же необходимо соединить крупные элементы конструкции, работа проводится в помещении, герметично закрытом. Любая сварка должна осуществляться подготовленными людьми, а в данной ситуации к работе допускаются лишь профессиональнее сварщики с внушительным опытом. Для них в помещении предусматриваются системы жизнеобеспечения.

Другие способы соединения титановых деталей

Иногда сварка титана выглядит нецелесообразной. В этом случае зачастую используют пайку. Такой вид обработки титанового материала является довольно сложным. Причина в том, что при температурном воздействии оксидная пленка на поверхности детали приводит к весьма непрочному соединению вне зависимости от того, с каким металлом спаивается титан. Поэтому из всех металлов, идеально взаимодействующих с титаном при пайке, подходят лишь алюминий и серебро повышенной чистоты.

Еще один способ соединения титановых изделий между собой или с деталями из иных металлов - это клепка. Этот метод, как и применение болтов, является механическим. Если ставится заклепка из титана, работа существенно удлиняется. При использовании болтов необходимо покрывать их тефлоном либо серебром, в противном случае не избежать налипания титана, а само соединение окажется достаточно хрупким.

Способы нейтрализации минусов титана

Недостатком этого уникального металла является задирание, налипание, которое возникает при трении. В результате происходит ускоренное изнашивание титанового сплава. Если применяется фрезеровка металла , это обстоятельство нельзя не учитывать. Скользя по металлической поверхности, титан вступает в реакцию и начинает налипать, постепенно поглощая всю деталь.

Однако верхний слой титана можно сделать более прочной, устойчивой к истиранию и налипанию. В том числе, для этой цели используется азотирование. Метод состоит в выдерживании детали в азотном газе. Изделие должно быть разогрето в среднем до 900 градусов, а время выдержки составляет свыше суток. В результате азотирования поверхность элемента покрывается нитридной пленкой, придающей титану особую твердость. Как следствие - повышение износостойкости титановой детали.

Еще один метод, позволяющий повысить свойства металла, - это его оксидирование. Оно помогает устранить задирание. Титановую деталь необходимо нагреть, чтобы на ее поверхности возникла оксидная пленка. Она плотно покрывает верхний слой металла, не пропуская внутрь воздух.

Оксидирование может быть низко- и высокотемпературным. В последнем случае изделие выдерживают в течение нескольких часов в нагретом состоянии, а после чего опускают его в холодную воду. Это помогает ликвидировать окалину. Оксидированная таким образом деталь становится более устойчивой к изнашиванию сразу на несколько порядков.

Фрезерование титановых деталей

Титан применяется в самых разных промышленных сферах, в том числе, в самолетостроении и космонавтике. В этих отраслях чаще всего используются детали, выполненные из титана.

Нужно учитывать, что фрезерная обработка металла отличается сложностью. Поэтому для таких работ требуется применять острые фрезы с повышенной скоростью. Следует также максимально снизить контакт детали с резцом. Фрезерование начинается по дуге, а в конце работы фаска должна сниматься под определенным углом.

Квалификация фрезеровщика играет серьезную роль не только в выполнении самих работ, но и в определении их стоимости. Многое будет также зависеть и от того, насколько сложной выглядит геометрия создаваемого из титана элемента.

Планировки