Чередование бесполого и полового поколений. Презентация на тему "Чередование поколений." Чередование поколений водорослей

Жизненный цикл - совокупность фаз развития, которые с последовательной закономерностью сменяют друг друга. В одних организмов (некоторые бактерии) измеряется минутами, а в других (секвойя, слоны) превышает десятки лет. Для большинства организмов жизненный цикл длится от яйцеклетки до яйцеклетки следующего поколения. Зависит продолжительность циклов от количества поколений, которые меняются в течение года, или количества лет, в течение которых осуществляется один жизненный цикл. Различают простые и сложные жизненные циклы. Простой жизненный цикл - цикл развития, при котором все поколения не отличаются друг от друга. Сложный жизненный цикл - цикл развития, при котором все поколения отличаются друг от друга или происходят сложные преобразования организма.

Простые и сложные жизненные циклы

Простые жизненные циклы

Сложные жизненные циклы

Не сопровождаются чередованием поколений

Сопровождаются чередованием поколений

Свойственные для растений, в которых все последовательные поколения не отличаются друг от друга (в низших растений)

Свойственные для растений, у которых есть чередование спорофита и гаметофита (у высших растений)

Присущие животным с прямым типом развития (гидра, дождевой червь, пресмыкающиеся, птицы, млекопитающие и др.).

Присущие животным с косвенным типом развития или с чередованием поколений, размножающихся различными способами (бабочки, костные рыбы, земноводные и др.)

Во многих организмов со сложным жизненным циклом наблюдается чередование поколений. Чередование поколений - закономерная смена поколений, размножающихся половым путем, одним или несколькими неполовыми поколениями. Границей между половым и бесполым поколениями является процесс оплодотворения. Во многих простейших, водорослей и членистоногих летом наблюдается бесполое размножение, а осенью - половое. В процессе эволюции в жизненном цикле закономерно уменьшается роль (продолжительность существования и размеры) половой гаплоидной фазы и увеличивается роль неполовой диплоидной. У растений чередование поколений проявляется чередованием спорофита и гаметофита.

Спорофит - это диплоидное поколения, которое образует споры и обеспечивает бесполое размножение. Имеет органы бесполого размножения - спорангии, которые могут в некоторых групп высших растений формировать микро- и мегаспоры. Гаметофит - это гаплоидны поколения, которое образует гаметы и обеспечивает половое размножение. Имеет органы полового размножения - гаметангии, которые могут в некоторых групп высших растений дифференцироваться на архегонии (женские гаметангии) и антеридии (мужские).

Биологическое значение чередование спорофита и гаметофита заключается в том, что происходит быстрое увеличение численности вида (благодаря бесполое размножение спорофитом) и генетическое разнообразие особей и создание предпосылок для освоения новых условиях (благодаря половом размножению гаметофитом).

У животных выделяют первичное и вторичное чередование поколений:

1 ) первичное чередование есть чередование поколений, размножающихся половым путем, с поколениями, для которых имеет место бесполое размножение.

2 ) вторичное дежурство.

гетерогония - чередование типичного полового размножения с партеногенезом (например, у всех представителей класса поросят, у членистоногих)

метагенез - чередование полового размножения с вегетативным (например, в некоторых медуз)

РАЗМНОЖЕНИЕ РАСТЕНИЙ

Л е к ц и я 22

ТИПЫ РАЗМНОЖЕНИЯ РАСТЕНИЙ

Размножение - характерное свойство всех живых существ.

Вегетативное размножение. Бесполое размножение. Половое

Размножение. Значение полового процесса.

Чередование поколений

Размножение - характерное свойство всех живых существ . Размножение столь же обязательно, как рост, раздражимость, наследственность и др. Сущность размножения состоит в том, что каждый организм воспроизводит себе подсобные особи. Благодаря чему поддерживается существование вида. В основе процесса размножения лежит способность клеток к делению и дифференциации.

Как разнообразны живые существа, так разнообразны и способы размножения. Но отличия касаются главным образом деталей процесса. По основным же принципиальным признакам различают три способа размножения растений – вегетативное размножение, бесполое и половое.

Вегетативное размножение . Этот тип размножения свойствен высшим и низшим растениям. Образование новых особей при вегетативном размножении происходит за счет вегетативных органов, частей вегетативного тела.

Примером вегетативного, размножения является размножение некоторых одноклеточных растений путем деления клетки на две дочерние. Так размножаются хлорелла, хлорококк, пиннулярия и многие другие одноклеточные водоросли. Вегетативное размножение происходит при почковании дрожжей. Дрожжи - одноклеточные грибы, вегетативно размножаются очень быстро, отделяя от клетки ее меньшую часть. Такой способ размножения называется почкованием.

У многоклеточных водорослей вегетативное размножение происходит обрывками нитей или обломками слоевищ (например, у спирогиры, кладофоры).

Очень разнообразны способы вегетативного размножения у цветковых растений. Новые особи вида развиваются за счет вегетативных органов.

Корни многих растений дают придаточные почки, из которых развиваются новые побеги. Со временем они укореняются и продолжают существование как самостоятельные растения. Корневыми черенками и в форме корневой поросли размножаются малина, крыжовник, осот, вьюнок, одуванчик и многие другие растения.

Листья реже образуют придаточные почки. Иногда почки развиваются из опавших листьев, реже - на растении. В последнем случае растения называются живородящими. Размножаться с помощью листьев могут сердечник, глоксинии, определенные папоротники, бегония, бриофиллум, лилии, гиацинты и некоторые другие виды.

Обрывками и обломками стеблей - стеблевыми черенками - в природе размножаются кактусы, элодея, роголистник, ряска и пр. Искусственным же путем стеблевыми черенками размножается громадное число растений: яблони, груши, ивы, смородина, виноград, розы, хризантемы и т. д.


Для вегетативного размножения служат также видоизмененные побеги - клубни, луковицы, корневища - и усы и плети. В связи с такой функцией меняется их морфологическое и анатомическое строение.

Характерной особенностью вегетативного размножения является то, что в потомстве очень полно и точно воспроизводятся свойства и признаки материнского растения. Семенное же потомство цветковых растений не всегда повторяет признаки родительских форм, оно очень изменчиво и разнообразно. Многие ценные сортовые качества при семенном воспроизведении утрачиваются. По этой причине вегетативное размножение широко применяется в сельскохозяйственной практике, особенно в плодоводстве и цветоводстве. Размножение яблонь, груш, роз путем прививок - один из вариантов искусственного вегетативного размножения.

Бесполое размножение . Оно характеризуется тем, что для воспроизведения потомства образуются специализированные гаплоидные клетки, так называемые споры. Каждая спора, попадая в благоприятные условия, дает начало новой особи.

Спор представляет собой клетку с более или менее плотной оболочкой. Содержимое ее – цитоплазма, ядро, митохондрии, пластиды или пропластиды – обычные компоненты живой клетки. Кроме того, споры содержат запасные питательные вещества - капли масла, кристаллы белка, крахмал, сахар.

Споры водных растений имеют жгутики, с помощью которых активно передвигаются в воде. Такие споры называются зооспорами. Споры наземных растений и некоторых водных без жгутиков. Они разносятся ветром или током воды. Называются собственно спорами или апланоспорами. (от греч. а - нет, pianos - путешествие).

Споры образуются в обычных вегетативных клетках материнского организма или в специальных многоклеточных образованиях - спорангиях. Многоклеточные спорангии свойственны наземным растениям. Прочные стенки спорангия защищают споры и спорогенную ткань от высыхания. У водорослей спорангии устроены проще, поскольку засуха этим растениям не угрожает.

Уодноклеточных растений, например у хламидомонады, споры образуются путем деления содержимого клетки на несколько частей. Каждая часть протопласта еще внутри материнской клетки покрывается собственной оболочкой и оформляется как самостоятельная клетка. Затем оболочка материнской клетки ослизняется, слизь вымывается током воды, образуется отверстие, через которое выплывают споры. Каждая из них дает начало новой хламидомонаде. Спор образуется 4-8.

У высших растений при образовании спор происходит редукционное деление (меиоз), поэтому споры у этих растений являются гаплоидными клетками.

Для бесполого размножения характерны: очень высокая интенсивность размножения; одно растение образует тысячи и тысячи спор; очень однородное потомство, все особи которого почти повторяют признаки и свойства материнского растения.

Как видно из этой характеристики, бесполое и вегетативное размножение имеет много общего. Именно и в том и другом случае в образовании потомства участвует только одинорганизм и по этой причине образуется очень однородное, малоизменчивое потомство. Эти признаки сближают вегетативное и бесполое размножение. Отличаются же они тем, что при бесполом размножении образуются специальные органы размножения, а при вегетативном этого не происходит - новые особи развиваются из вегетативных органов. Различия, как видно, касаются деталей, главные же признаки бесполого и вегетативного размножения общие, поэтому они иногда объединяются в общий тип бесполого размножения и рассматриваются как варианты этого процесса.

Половое размножение . Этот тип размножения существенно отличается от бесполого и имеет важное биологическое значение для эволюции вида.

При половом процессе образуются специальные клетки полового размножения - половые клетки или гаметы (от греч. gametes - супруг), В отличии от спор каждая отдельная гамета не может дать начала новой особи, этому процессу предшествует процесс слияния двух гамет – оплодотворение. Клетка, которая образуется в результате оплодотворения, называется зиготой (от греч. zygo. - ярмо).

Морфологически зигота характеризуется тем, что имеет два набора хромосом, т. е. является диплоидной. Зигота отличается высокой физиологической активностью. После некоторого периода покоя или без него она энергично делится, делятся и ее производные в результате чего формируется многоклеточное тело. Конечный результат развития зиготы – образование новой особи.

Гаметы редко, только у некоторых низших растений, принадлежат одному организму. Но и в этом случае они не вполне тождественны. Чаще копулируют (сливаются) гаметы, образованные разными особями. Морфологически они могут быть одинаковыми, но отличаются физиологически.

Различают три формы полового процесса. Половой процесс называется изогамным (от греч. isos - равный, gamos - брак), если гаметы одинаковы. В этом случае гаметы морфологически не дифференцированы на мужские и женские. Их формы и размер одинаковы, они подвижны. Половой процесс называется гетерогамным (от греч. heteros - разный, gamos - брак), если гаметы отличаются и размерами и по форме, но сохраняют подвижность. Изогамия наблюдается, например, у хлорококка, кладофоры, гетерогамия - у эудорины; обе формы полового процесса наблюдаются у разных видов хламидомонады.

У громадного большинства растений гаметы дифференцированы на мужские и женские. Они отличаются своими размерами, строением и функциями. Женская гамета - крупная, неподвижная клетка, в ней сохраняется некоторый запас питательных веществ.Она называется яйцеклеткой. Отсюда и название процесса оогамия (греч. ооп - яйцо). Мужские гаметы - очень мелкие и подвижные клетки, с одним, двумя или многими жгутиками. Они называются сперматозоидами (от греч sperma - семя, zoon - животное). Типичные гаметы - гаплоидные клетки. Редукция числа хромосом происходит в результате мейоза, который у животных организмов имеет место непосредственно при образовании гамет, а у растений - в иной фазе цикла развития. При образовании зиготы в результате оплодотворения восстанавливается двойное число хромосом.

Гаметы образуются в гаметангиях: женские – в архегониях, мужские – в антеридиях. Строение этих органов варьирует в широких пределах и изучается в курсе систематики низших растний.

Значение полового процесса . Половое размножение не отличается высокой интенсивностью. Значение его в другом.

В результате полового процесса образуется более жизнеспособное «обновленное» потомство. Наследственная основа у зиготы, конечно, богаче, чем у каждой отдельной гаметы или споры. Поэтому в результате полового процесса развивается более разнообразное, более изменчивое и пластичное потомство. Относительная выживаемость полового потомства выше. Поскольку в нем ярко проявляется индивидуальная изменчивость, становится возможным существование в сравнительно разнообразных условиях. Расширяется ареал вида, появляются новые разновидности. Ярко выраженная индивидуальная изменчивость дает богатый материал для естественного отбора. Все эти предпосылки обеспечивают биологический прогресс вида.

Таким образом, если половой процесс почти не увеличивает численность вида, то он улучшает его «качество» - повышает его жизнеспособность. Этими результатам половой процесс принципиально отличен от бесполого.

При бесполом размножении количество особей значительно увеличивается, зато в качественном отношении нет никаких сдвигов. Признаки материнского поколения в бесполом потомстве повторяются почти неизменными. Как видно, половой и бесполый процессы дополняют друг друга, поэтому большинству видов свойственно чередование поколений.

Чередование поколений . Суть явления заключается в том, что в цикле развития каждого вида последовательно чередуются формы размножения и ядерные фазы. Если отправной точкой считать оплодотворение и, следовательно, образование зиготы, то цикл развития выглядит следующим образом.

Из зиготы развивается особь, которая состоит из диплоидных клеток (диплонт) и размножается бесполым путем, образуя споры. По этому признаку такой организм называется спорофитом (от греч. sporus – заросток и phyton – растение). Споры - гаплоидные клетки, при их образовании происходит редукция числа хромосом. С момента образования спор начинается гаплоидная фаза цикла развития. Развивающаяся из споры особь состоит из гаплоидных клеток (гаплонт) и размножается половым путем, образуя гаметы. По этой причине гаплонт иначе называется гаметофитом (от греч. gametes - супруг и phyton). В результате оплодотворения вновь образуется зигота, и цикл развития повторяется.

В цикле развития выделяются два узловых момента, в которых, происходит смена ядерных фаз: мейоз, типичный при образовании спор, в результате чего диплоидная фаза сменяется гаплоидной, и оплодотворение, при котором гаплоидная фаза сменяется диплоидной.

У разных видов в зависимости от их эволюционной подвинутости чередование поколений осуществляется в разной форме.

А. У многих водорослей диплоидна лишь зигота. Первое же ее деление - мейоз. Следовательно, вся вегетативная жизнь вида проходит в гаплоидной фазе. Такой жизненный цикл называется гаплонтным. Он присущ многим зеленым водорослям (хламидомонада, улотрикс, спирогира).

Б. Вид представлен особями морфологически одинаковыми, но отличающимися цитофизиологически. Часть из них - диплонты, другие - гаплонты. Первые образовались из зиготы, размножаются спорами, т. е. представляют собой спорофиты. Вторые образовались из спор размножаются половым путем, образуя гаметы, т. е. представляют собой гаметофиты. Поскольку оба поколения морфологически одинаковы, цикл развития таких растений называется изоморфным диплогаплонтным (диктиота типа бурых водорослей, ульва из типа зеленых).

В. У некоторых видов, таких немного, гаплоидны лишь гаметы, а вся вегетативная жизнь вида осуществляется в диплоидной фазе. Такой жизненный цикл называется диплонтным (фукус из типа бурых водорослей).

Г. У громадного большинства растений гаплоидная и диплоидная фазы развиты неодинаково, преобладает одна из них, чаще диплоидная, вторая, гаплоидная, редуцирована. Поскольку диплоидная и гаплоидная фазы морфологически неравны, цикл развития называется гетероморфным диплогаплонтным.

Низшие растения обнаруживают огромное разнообразие форм размножения и циклов развития. Большинство высших растений имеет гетероморфный диплогаплонтный цикл развития. В типичных случаях спорофит (диплонт) представляет собой морфологически хорошо развитое зеленое автотрофное растение, которое прикрепляется к почве и существует самостоятельно. Гаметофит (гаплонт) часто утрачивает способность к самостоятельному существованию, развивается на спорофите и питается за его счет, т. е. гетеротрофно.

Чередование поколений - биологически важное явление, способствующее выживанию вида в борьбе за существование. Рассмотрим размножение и чередование поколений на конкретных примерах.

ЧЕРЕДОВАНИЕ ПОКОЛЕНИЙ ЧЕРЕДОВАНИЕ ПОКОЛЕНИЙ

закономерная смена в жизненном цикле организмов генераций (поколений, бионтов), различающихся способом размножения. У животных различают первичное и вторичное Ч. п. Первичным Ч. п. , свойственным мн. простейшим, считают смену половой генерации поколением, размножающимся неполовыми клетками (агаметами). Так, у фораминифер чередующиеся поколения представлены половыми и бесполыми особями - гамонтами и агамонтами. Редукционное деление (мейоз) происходит перед образованием агамет, поэтому половое поколение гаплоидно, так же как и гаметы, тогда как зигота и агамонты диплоидны. У солнечников, нек-рых жгутиконосцев мейоз связан с образованием гамет, к-рые являются единств, гаплоидной стадией жизненного цикла. Такие же отношения свойственны всем многоклеточным животным. Вторичное Ч. п. встречается у животных в двух формах. Чередование нормального полового процесса с партеногенезом наз. гетерогонией, а чередование полового размножения с бесполым - метагенезом. Гетерогония характерна для трематод, нек-рых круглых червей и коловраток, ряда членистоногих и др. Метагенез характерен для оболочников и кишечнополостных, у к-рых половое поколение представлено одиночными свободноплавающими медузами, а бесполое - сидячими полипами. У растений различают гаплоидное поколение - половое, или гаметофит, и диплоидное - бесполое, или спорофит. Половые органы, образующие гаметы, развиваются на гаметофите, при этом он может быть обоеполым (сфагнум, равноспоровые папоротники, плауны) или раздельнополым (нек-рые бурые водоросли, разноспоровые папоротники, плауны и все высшие растения). На спорофите развиваются органы бесполого размножения (спорангии, зооспорангии), образующие в результате мейоза гаплоидные споры, прорастающие затем в новые половые поколения. Гаметофит и спорофит одинаковы морфологически и по продолжительности жизни (изоморфное Ч. п.) или резко различны (гетероморфное Ч. п.). Для высших растений характерно только гетероморфное Ч. п. У водорослей встречаются обе формы. При изоморфной смене поколений каждое из них представлено самостоятельно живущей особью (нек-рые зелёные, бурые и мн. красные водоросли), так что в жизненном цикле существуют два (при обоеполом гаметофите) или три (при раздельнополом гаметофите) независимых и одинаковых растения. При гетероморфной смене поколений оба развиваются либо независимо друг от друга (ламинария, равноспоровые папоротники, плауны, хвощи), либо одно из поколений, будучи лишённым самостоятельного развития, существует за счёт другого (мхи и все семенные растения), но преобладает всегда одно из поколений - либо гаметофит, либо спорофит. У высших растений к гаметофитной линии эволюции (с преобладанием в пикле развития гаметофита) относятся только моховидные, у к-рых спорофит, наз. спорогоном, развивается в виде коробочки со спорами на самом зелёном растении, являющемся гаметофитом. К спорофитной линии эволюции (с преобладанием в цикле развития спорофита) относятся все остальные высшие растения. При этом спорофит - листостебельное растение, на к-ром развиваются спорангии, а гаметофит (заросток) развит слабее, недолговечен и представлен обоеполым талломом, живущим самостоятельно (все равноспоровые папоротники, плауны, хвощи), либо микроскопич. образованиями, развивающимися частично или полностью на спорофите и за счёт него (разноспоровые папоротники и плауны, голосеменные, цветковые). (см. СПОРОФИТ , ГАМЕТОФИТ).

.(Источник: «Биологический энциклопедический словарь.» Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. - 2-е изд., исправл. - М.: Сов. Энциклопедия, 1986.)

чередова́ние поколе́ний

Смена поколений в жизненном цикле организмов. При этом поколения (генерации) отличаются способами размножения. У некоторых простейших (напр., у фораминифер) поколение, размножающееся с помощью гамет, сменяется поколением, размножающимся неполовыми клетками. У оболочников и кишечнополостных одиночные свободноплавающие медузы представляют собой половое поколение, а полипы (сидячие или колониальные формы) – бесполое поколение.
У растений чередование поколений выражается сменой в цикле развития гаплоидного – полового поколения, или гаметофита , и диплоидного – бесполого, или спорофита . На гаметофите развиваются половые органы, образующие гаметы; на спорофите – органы бесполого размножения (спорангии или зооспорангии), которые в результате мейоза образуют гаплоидные споры, дающие новое половое поколение. У разных растений в цикле развития преобладает либо половое, либо бесполое поколение. При преобладании полового поколения (у мхов) спорофит, или спорогон, развивается на зелёном растении (гаметофите) в виде коробочки со спорами. При преобладании бесполого поколения (у папоротников, плаунов, хвощей, голосеменных) спорофит представлен зелёным растением, на котором развиваются спорангии, а гаметофит – слабо развитым заростком , растущим отдельно или развивающимся на спорофите.

.(Источник: «Биология. Современная иллюстрированная энциклопедия.» Гл. ред. А. П. Горкин; М.: Росмэн, 2006.)


Смотреть что такое "ЧЕРЕДОВАНИЕ ПОКОЛЕНИЙ" в других словарях:

    У растений чередование в цикле развития двух поколений полового (гаметофит) и бесполого (спорофит). У беспозвоночных животных смена в жизненном цикле двух или нескольких поколений особей, различающихся формой, функциями, образом жизни, а иногда и … Большой Энциклопедический словарь

    чередование поколений - Закономерная смена различающихся способов размножения генераций в процессе жизненного цикла; у животных различают первичное Ч.п., а также гетерогонию и метагенез; у многих растений Ч.п. представлено формированием гаметофита (половое поколение) и… … Справочник технического переводчика

    ЧЕРЕДОВАНИЕ ПОКОЛЕНИЙ - англ.alternation of generation нем.Generationswechsel франц.alternance des générations см. > … Фитопатологический словарь-справочник

    Закономерная смена у организмов генераций, различающихся типом размножения. У животных имеются первичное и вторичное Ч. п. Первичным Ч. п., свойственным многим простейшим, считают смену половой генерации поколением,… … Большая советская энциклопедия

    чередование поколений - ЭМБРИОЛОГИЯ ЖИВОТНЫХ ЧЕРЕДОВАНИЕ ПОКОЛЕНИЙ, СМЕНА ПОКОЛЕНИЙ – смена поколений с разными способами размножения в жизненном цикле животных. Различают: 1) Чередование поколений, при котором оба поколения внешне неразличимы, но размножаются разными… … Общая эмбриология: Терминологический словарь

    У растений чередование в цикле развития двух поколений полового (гаметофит) и бесполого (спорофит). У беспозвоночных животных смена в жизненном цикле двух или нескольких поколений особей, различающихся формой, функциями, образом жизни, а иногда… … Энциклопедический словарь

    чередование поколений - kartų kaita statusas T sritis ekologija ir aplinkotyra apibrėžtis Augalų ir grybų haplofazės ir diplofazės kaita per gyvenimo ciklą. atitikmenys: angl. allelobiogenesis; allelogenesis; metagenesis vok. Allelogenesis, f; Metagenesis, f rus. смена… …

    чередование поколений - kartų kaita statusas T sritis ekologija ir aplinkotyra apibrėžtis Kai kurių bestuburių gyvūnų dauginimosi būdo kaita per jų gyvenimo ciklą – kaitaliojasi lytinė ir nelytinė kartos. atitikmenys: angl. allelobiogenesis; allelogenesis; metagenesis… … Ekologijos terminų aiškinamasis žodynas

    Alteration of generation, digenesis, heterogenesis чередование поколений. Закономерная смена различающихся способов размножения генераций в процессе жизненного цикла; у животных различают первичное Ч.п., а также гетерогонию и… … Молекулярная биология и генетика. Толковый словарь.

    чередование поколений - kartų kaita statusas T sritis augalininkystė apibrėžtis Raidos cikle dviejų kartų – haploidinės (gametofito) ir nelytinės diploidinės (sporofito) – pasikeitimas. atitikmenys: angl. alloiobiogenesis; heterogenesis; metagenesis rus. чередование… … Žemės ūkio augalų selekcijos ir sėklininkystės terminų žodynas

Организмам, размножающимся только половым путем, характерно чередование гаплоидной и диплоидной фаз в их развитии. У многих организмов, включая млекопитающих, это чередование имеет регулярный характер, и на нем основано сохранение видовых признаков организмов. Диплоидия способствует накоплению разных аллелей. Напротив, для организмов, которые могут размножаться как половым, так и бесполым путем, характерно чере дование (смена) поколений, когда одно или несколько бесполых поколений организмов сменяется поколением организмов, размножающихся половым путем.

Различают первичное и вторичное чередование поколений. Первичное чередование поколений отмечается у организмов, развивших в ходе эволюции половой прогресс, но сохранивших способность к бесполому размножению, и заключается в регулярном чередовании полового и бесполого поколений (рис. 87). Оно встречается у животных (простейших), у водорослей и у всех высших растений. У простейших классическим примером первичного чередования поколений является бесполое размножение малярийного плазмодия в организме человека (шизогония) и половое - в организме малярийного комара. У растений половое поколение представлено гаметофитом, бесполое - спорофитом. Механизм первичного чередования заключается в том, что на растениях спорофитного поколения развиваются споры, которые на основе мейоза дают гаплоидные мужские и женские гаметофиты. На последних развиваются спермии и яйцеклетки. Оплодотворение яйцеклетки дает начало диплоидному спорофиту. Таким образом, клетки гаметофита содержат гаплоидный набор хромосом, а спорофита - диплоидный набор, т. е. у растений чередование поколений связано со сменой гаплоидного и диплоидного состояний.

Если проследить за соотношением между спорофитом и гаметофитом у растений разного уровня организации, то можно увидеть, что в ходе эволюции развитию подвергался спорофит, тогда как для гаметофиты была характерной редукция. Например, у мхов преобладающим является гаметофит (гаплоидное поколение), на котором живет спорофит. Но уже у папоротникообразных преобладающим является спорофит (диплоидное поколение) в виде хорошо развитого растения со стеблями и корнями, а гаметофит представлен слоем клеток, которые образуют пластину, прикрепляющуюся к почве с помощью ризоидов. Далее, у голосеменных гаметофит уменьшается до небольших количеств клеток, а у покрытосеменных мужской гематофит представлен лишь двумя клетками, женский - семью, тогда как спорофитом у голосеменных являются деревья (сосна, ель и другие), а покрытосеменных - деревья, кустарники, травы.

Между гаметофитом и спорофитом могут быть как сходства по морфологии и продолжительности жизни, так и различия по этим признакам. В первом случае это называют изоморфным чередованием поколений, во втором - гетероморфным.

Вторичное чередование поколений широко встречается у животных. Оно отмечается в формах гетерогонии и метагенеза. Гетерогония заключается в первичном чередовании полового процесса и партеногенеза. Например, у трематод половое размножение регулярно сменяется партеногенезом. У многих других организмов гетерогония зависит от сезона. Так, коловратки, дафнии и тли осенью размножаются путем зигогенеза (путем оплодотворения яйцеклеток и образования зигот), а летом - путем партеногенеза. Метагенез заключается в чередовании полового размножения и вегетативного (бесполового). Например, гидры размножаются обычно почкованием, но при понижении температуры образуют половые клетки. У кишечнополостных на некоторых стадиях развития происходит переход от полового размножения к вегетативному. У некоторых морских кишечнополостных полипоидное поколение правильно чередуется с медузоидным. Для полипоидного поколения характерно размножение так называемой стробиляцией (поперечными перетяжками), для медузоидного - половым путем (оплодотворение яиц, образование личинок и развитие полипов).

Чередование поколений - закономерная смена у организмов поколений, различающихся способом размножения. Организмы многих видов могут размножаться как бесполым, так и половым путем. В связи с этим говорят о бесполом и половом поколениях данного вида. Чередование этих поколений у растений и животных имеет много общих черт. Граница, разделяющая половое и бесполое поколения в цикле развития, - процесс оплодотворения (рис. 1). При этом в результате слияния гаплоидных (т. е. содержащих одинарный набор хромосом) гамет появляется диплоидная (т. е. содержащая двойной набор хромосом) зигота, и половое поколение переходит в бесполое.

И бесполое, и половое поколения могут иметь как одинарный, так и двойной набор хромосом: в зависимости от того, на какой стадии жизненного цикла происходит мейоз. При мейозе число хромосом уменьшается вдвое и диплоидный их набор переходит в гаплоидный. Мейоз и оплодотворение - это две вехи, разделяющие гаплоидную и диплоидную фазы в цикле развития.

В процессе эволюции в цикле развития закономерно уменьшается роль (продолжительность существования и размеры) гаплоидной фазы и увеличивается роль диплоидной фазы.

У споровиков и жгутиковых, многих водорослей и некоторых грибов диплоидная фаза представлена только зиготой, которая сразу претерпевает мейоз, образуя гаплоидные клетки (рис. 1, б и 2). У всех высших и некоторых низших форм (отдельные водоросли и грибы, инфузории) зигота делится путем митоза, поэтому бесполое поколение у них так же, как и зигота, диплоидное.

Так, у фораминифер из зиготы вырастает диплоидное бесполое поколение. В результате мейоза из него образуются гаплоидные клетки, из которых вырастает также гаплоидное половое поколение. Половое поколение в результате многократного деления ядра образует гаметы, которые, сливаясь попарно, дают зиготу (рис. 1, в). Процесс бесполого размножения у мохообразных, папоротникообразных и некоторых других растений происходит в результате рассеивания гаплоидных спор, возникающих при мейозе (рис. 1, в и 3). У таких видов процесс мейоза отделяет бесполое поколение (спорофит) от полового (гаметофит). Споры делятся митотически, образуя гаплоидное половое поколение.

У кишечнополостных и других многоклеточных животных происходит дальнейшее подавление гаплоидной фазы (рис. 1, г).

У них диплоидно как бесполое, так и половое поколение, которое образуется из бесполого путем митотического деления его клеток. Мейоз происходит только в процессе образования гамет, которые являются единственной гаплоидной фазой у таких организмов. Например, гидроидные полипы представляют собой бесполое поколение. Почкуясь, они образуют колонии, на которых развиваются медузы с семенниками- и с яичниками (диплоидное половое поколение). Медузы свободно плавают в воде и размножаются половым путем. В результате опять возникают полипы (рис. 5).

Уживотных различают первичное и вторичное чередование поколений. При первичном чередуется бесполое и половое размножение. Так бывает у многих простейших. К вторичному чередованию поколений относят метагенез и гетерогонию. При метагенезе, который характерен для оболочников и кишечнополостных, чередуется половое и вегетативное размножение. При гетерогонии, которая характерна для трематод, некоторых круглых червей и коловраток, ряда членистоногих, чередуются нормальное половое размножение с партеногенезом.

Чередование поколений зависит от условий среды. При благоприятных условиях размножение происходит, как правило, бесполыми способами - делением, почкованием, вегетативно или партеногенетически. При неблагоприятных условиях бесполое поколение сменяется половым.

Эволюция размножения шла от бесполого, свойственного одноклеточным, к половому. Примитивные формы размножаются только бесполым путем, у более сложных форм бес-лолое размножение чередуется с половым. Наиболее прогрессивные виды размножаются только половым путем (рис. 1).

Чередование поколений у растений. Типичное чередование поколений характерно для растений, у которых многоклеточны как диплоидная фаза (диплонт), так и гаплоидная (гаплонт). Диплонт образует спорангии, в которых в результате мейоза возникают споры (поэтому диплонт называют также спорофитом или бесполым поколением). Гаплонт образует гаметангии, в которых без редукционного деления - мейоза образуются половые клетки - гаметы (гаплонт называют также гаметофитом или половым поколением). Спорофит развивается из зиготы, возникающей в результате оплодотворения, т. е. слияния двух гамет, а гаметофит - из споры. У немногих растений (например, у некоторых зеленых и бурых водорослей) спорофит и гаметофит развиты одинаково, а у большинства растений в циклах развития преобладает либо гаметофит (например, у мохообразных), либо спорофит - бурая водоросль ламинария, папоротникообразные и семенные растения (рис. 6).

У многих зеленых водорослей (хламидомонада, улотрикс, спирогира и др.) диплоидны только зиготы, при прорастании которых происходит мейоз (рис. 6). А у сифоновых, диатомовых и некоторых бурых водорослей, как и у огромного большинства животных, гаплоидны только гаметы, возникающие в результате мейоза.

Поэтому у этих растений фактически чередования поколений нет, хотя- смена ядерных фаз происходит.

Фазы в циклах развития высших растений имеют особые названия: спорофиты мохообразных называют спорогониями (они развиваются на гаметофитах), а гаметофиты остальных высших растений - заростками (рис. 6). У папоротникообразных они существуют самостоятельно, а у семенных развиваются на спорофитах. Заростки равноспоровых растений (см. Споры) обоеполы, а разноспоровых - раздельнополы и более редуцированы (особенно мужские), чем заростки равноспоровых. Так, например, у покрытосеменных растений мужской заросток - это развивающееся из микроспоры пыльцевое зерно, а женский заросток - зародышевый мешок, развивающийся из мегаспоры.

Дизайн